5. $\int_{3}^{\infty} \frac{1}{(x-2)^{3 / 2}} d x=\lim _{t \rightarrow \infty} \int_{3}^{t}(x-2)^{-3 / 2} d x=\lim _{t \rightarrow \infty}\left[-2(x-2)^{-1 / 2}\right]_{3}^{t} \quad[u=x-2, d u=d x]$

$$
=\lim _{t \rightarrow \infty}\left(\frac{-2}{\sqrt{t-2}}+\frac{2}{\sqrt{1}}\right)=0+2=2 . \quad \text { Convergent }
$$

7. $\int_{-\infty}^{0} \frac{1}{3-4 x} d x=\lim _{t \rightarrow-\infty} \int_{t}^{0} \frac{1}{3-4 x} d x=\lim _{t \rightarrow-\infty}\left[-\frac{1}{4} \ln |3-4 x|\right]_{t}^{0}=\lim _{t \rightarrow-\infty}\left[-\frac{1}{4} \ln 3+\frac{1}{4} \ln |3-4 t|\right]=\infty$.

Divergent

9. $\int_{2}^{\infty} e^{-5 p} d p=\lim _{t \rightarrow \infty} \int_{2}^{t} e^{-5 p} d p=\lim _{t \rightarrow \infty}\left[-\frac{1}{5} e^{-5 p}\right]_{2}^{t}=\lim _{t \rightarrow \infty}\left(-\frac{1}{5} e^{-5 t}+\frac{1}{5} e^{-10}\right)=0+\frac{1}{5} e^{-10}=\frac{1}{5} e^{-10}$. Convergent
10. $\int_{0}^{\infty} \frac{x^{2}}{\sqrt{1+x^{3}}} d x=\lim _{t \rightarrow \infty} \int_{0}^{t} \frac{x^{2}}{\sqrt{1+x^{3}}} d x=\lim _{t \rightarrow \infty}\left[\frac{2}{3} \sqrt{1+x^{3}}\right]_{0}^{t}=\lim _{t \rightarrow \infty}\left(\frac{2}{3} \sqrt{1+t^{3}}-\frac{2}{3}\right)=\infty$. Divergent
11. $\int_{-\infty}^{\infty} x e^{-x^{2}} d x=\int_{-\infty}^{0} x e^{-x^{2}} d x+\int_{0}^{\infty} x e^{-x^{2}} d x$.

$$
\begin{aligned}
& \int_{-\infty}^{0} x e^{-x^{2}} d x=\lim _{t \rightarrow-\infty}\left(-\frac{1}{2}\right)\left[e^{-x^{2}}\right]_{t}^{0}=\lim _{t \rightarrow-\infty}\left(-\frac{1}{2}\right)\left(1-e^{-t^{2}}\right)=-\frac{1}{2} \cdot 1=-\frac{1}{2}, \text { and } \\
& \int_{0}^{\infty} x e^{-x^{2}} d x=\lim _{t \rightarrow \infty}\left(-\frac{1}{2}\right)\left[e^{-x^{2}}\right]_{0}^{t}=\lim _{t \rightarrow \infty}\left(-\frac{1}{2}\right)\left(e^{-t^{2}}-1\right)=-\frac{1}{2} \cdot(-1)=\frac{1}{2} .
\end{aligned}
$$

Therefore, $\int_{-\infty}^{\infty} x e^{-x^{2}} d x=-\frac{1}{2}+\frac{1}{2}=0$. Convergent
15. $\int_{0}^{\infty} \sin ^{2} \alpha d \alpha=\lim _{t \rightarrow \infty} \int_{0}^{t} \frac{1}{2}(1-\cos 2 \alpha) d \alpha=\lim _{t \rightarrow \infty}\left[\frac{1}{2}\left(\alpha-\frac{1}{2} \sin 2 \alpha\right)\right]_{0}^{t}=\lim _{t \rightarrow \infty}\left[\frac{1}{2}\left(t-\frac{1}{2} \sin 2 t\right)-0\right]=\infty$.

Divergent
17. $\int_{1}^{\infty} \frac{1}{x^{2}+x} d x=\lim _{t \rightarrow \infty} \int_{1}^{t} \frac{1}{x(x+1)} d x=\lim _{t \rightarrow \infty} \int_{1}^{t}\left(\frac{1}{x}-\frac{1}{x+1}\right) d x \quad$ [partial fractions]

$$
=\lim _{t \rightarrow \infty}[\ln |x|-\ln |x+1|]_{1}^{t}=\lim _{t \rightarrow \infty}\left[\ln \left|\frac{x}{x+1}\right|\right]_{1}^{t}=\lim _{t \rightarrow \infty}\left(\ln \frac{t}{t+1}-\ln \frac{1}{2}\right)=0-\ln \frac{1}{2}=\ln 2 .
$$

Convergent

19. $\int_{-\infty}^{0} z e^{2 z} d z=\lim _{t \rightarrow-\infty} \int_{t}^{0} z e^{2 z} d z=\lim _{t \rightarrow-\infty}\left[\frac{1}{2} z e^{2 z}-\frac{1}{4} e^{2 z}\right]_{t}^{0} \quad\left[\begin{array}{c}\text { integration by parts with } \\ u=z, d v=e^{2 z} d z\end{array}\right]$

$$
=\lim _{t \rightarrow-\infty}\left[\left(0-\frac{1}{4}\right)-\left(\frac{1}{2} t e^{2 t}-\frac{1}{4} e^{2 t}\right)\right]=-\frac{1}{4}-0+0 \quad \text { [by l'Hospital's Rule] }=-\frac{1}{4} . \text { Convergent }
$$

21. $\int_{1}^{\infty} \frac{\ln x}{x} d x=\lim _{t \rightarrow \infty}\left[\frac{(\ln x)^{2}}{2}\right]_{1}^{t} \quad\left[\begin{array}{l}\text { by substitution with } \\ u=\ln x, d u=d x / x\end{array}\right]=\lim _{t \rightarrow \infty} \frac{(\ln t)^{2}}{2}=\infty . \quad$ Divergent
22. $\int_{-\infty}^{\infty} \frac{x^{2}}{9+x^{6}} d x=\int_{-\infty}^{0} \frac{x^{2}}{9+x^{6}} d x+\int_{0}^{\infty} \frac{x^{2}}{9+x^{6}} d x=2 \int_{0}^{\infty} \frac{x^{2}}{9+x^{6}} d x \quad$ [since the integrand is even].

Now $\int \frac{x^{2} d x}{9+x^{6}}\left[\begin{array}{c}u=x^{3} \\ d u=3 x^{2} d x\end{array}\right]=\int \frac{\frac{1}{3} d u}{9+u^{2}}\left[\begin{array}{c}u=3 v \\ d u=3 d v\end{array}\right]=\int \frac{\frac{1}{3}(3 d v)}{9+9 v^{2}}=\frac{1}{9} \int \frac{d v}{1+v^{2}}$

$$
=\frac{1}{9} \tan ^{-1} v+C=\frac{1}{9} \tan ^{-1}\left(\frac{u}{3}\right)+C=\frac{1}{9} \tan ^{-1}\left(\frac{x^{3}}{3}\right)+C
$$

so $2 \int_{0}^{\infty} \frac{x^{2}}{9+x^{6}} d x=2 \lim _{t \rightarrow \infty} \int_{0}^{t} \frac{x^{2}}{9+x^{6}} d x=2 \lim _{t \rightarrow \infty}\left[\frac{1}{9} \tan ^{-1}\left(\frac{x^{3}}{3}\right)\right]_{0}^{t}=2 \lim _{t \rightarrow \infty} \frac{1}{9} \tan ^{-1}\left(\frac{t^{3}}{3}\right)=\frac{2}{9} \cdot \frac{\pi}{2}=\frac{\pi}{9}$.
Convergent
25. $\int_{e}^{\infty} \frac{1}{x(\ln x)^{3}} d x=\lim _{t \rightarrow \infty} \int_{e}^{t} \frac{1}{x(\ln x)^{3}} d x=\lim _{t \rightarrow \infty} \int_{1}^{\ln t} u^{-3} d u \quad\left[\begin{array}{c}u=\ln x, \\ d u=d x / x\end{array}\right]=\lim _{t \rightarrow \infty}\left[-\frac{1}{2 u^{2}}\right]_{1}^{\ln t}$

$$
=\lim _{t \rightarrow \infty}\left[-\frac{1}{2(\ln t)^{2}}+\frac{1}{2}\right]=0+\frac{1}{2}=\frac{1}{2} . \quad \text { Convergent }
$$

31. $\int_{-2}^{3} \frac{d x}{x^{4}}=\int_{-2}^{0} \frac{d x}{x^{4}}+\int_{0}^{3} \frac{d x}{x^{4}}$, but $\int_{-2}^{0} \frac{d x}{x^{4}}=\lim _{t \rightarrow 0^{-}}\left[-\frac{x^{-3}}{3}\right]_{-2}^{t}=\lim _{t \rightarrow 0^{-}}\left[-\frac{1}{3 t^{3}}-\frac{1}{24}\right]=\infty . \quad$ Divergent
32. $I=\int_{0}^{3} \frac{d x}{x^{2}-6 x+5}=\int_{0}^{3} \frac{d x}{(x-1)(x-5)}=I_{1}+I_{2}=\int_{0}^{1} \frac{d x}{(x-1)(x-5)}+\int_{1}^{3} \frac{d x}{(x-1)(x-5)}$.

Now $\frac{1}{(x-1)(x-5)}=\frac{A}{x-1}+\frac{B}{x-5} \Rightarrow 1=A(x-5)+B(x-1)$.
Set $x=5$ to get $1=4 B$, so $B=\frac{1}{4}$. Set $x=1$ to get $1=-4 A$, so $A=-\frac{1}{4}$. Thus

$$
\begin{aligned}
I_{1} & =\lim _{t \rightarrow 1^{-}} \int_{0}^{t}\left(\frac{-\frac{1}{4}}{x-1}+\frac{\frac{1}{4}}{x-5}\right) d x=\lim _{t \rightarrow 1^{-}}\left[-\frac{1}{4} \ln |x-1|+\frac{1}{4} \ln |x-5|\right]_{0}^{t} \\
& =\lim _{t \rightarrow 1^{-}}\left[\left(-\frac{1}{4} \ln |t-1|+\frac{1}{4} \ln |t-5|\right)-\left(-\frac{1}{4} \ln |-1|+\frac{1}{4} \ln |-5|\right)\right] \\
& =\infty, \text { since } \lim _{t \rightarrow 1^{-}}\left(-\frac{1}{4} \ln |t-1|\right)=\infty .
\end{aligned}
$$

Since I_{1} is divergent, I is divergent.
49.

For $x>0, \frac{x}{x^{3}+1}<\frac{x}{x^{3}}=\frac{1}{x^{2}}$. $\int_{1}^{\infty} \frac{1}{x^{2}} d x$ is convergent by Equation 2 with $p=2>1$, so $\int_{1}^{\infty} \frac{x}{x^{3}+1} d x$ is convergent by the Comparison Theorem. $\int_{0}^{1} \frac{x}{x^{3}+1} d x$ is a constant, so $\int_{0}^{\infty} \frac{x}{x^{3}+1} d x=\int_{0}^{1} \frac{x}{x^{3}+1} d x+\int_{1}^{\infty} \frac{x}{x^{3}+1} d x$ is also convergent.

7.8 Student Homework Solutions

51.

For $x>1, f(x)=\frac{x+1}{\sqrt{x^{4}-x}}>\frac{x+1}{\sqrt{x^{4}}}>\frac{x}{x^{2}}=\frac{1}{x}$, so $\int_{2}^{\infty} f(x) d x$ diverges by comparison with $\int_{2}^{\infty} \frac{1}{x} d x$, which diverges by Equation 2 with $p=1 \leq 1$. Thus, $\int_{1}^{\infty} f(x) d x=\int_{1}^{2} f(x) d x+\int_{2}^{\infty} f(x) d x$ also diverges.
54.

For $0<x \leq 1, \frac{\sin ^{2} x}{\sqrt{x}} \leq \frac{1}{\sqrt{x}}$. Now
$I=\int_{0}^{\pi} \frac{1}{\sqrt{x}} d x=\lim _{t \rightarrow 0^{+}} \int_{t}^{\pi} x^{-1 / 2} d x=\lim _{t \rightarrow 0^{+}}\left[2 x^{1 / 2}\right]_{t}^{\pi}=\lim _{t \rightarrow 0^{+}}(2 \pi-2 \sqrt{t})=2 \pi-0=2 \pi$, so I is convergent, and by comparison, $\int_{0}^{\pi} \frac{\sin ^{2} x}{\sqrt{x}} d x$ is convergent.

