1.

Let $u=\sin x$, so that $d u=\cos x d x$. Then $\int \cos x\left(1+\sin ^{2} x\right) d x=\int\left(1+u^{2}\right) d u=u+\frac{1}{3} u^{3}+C=\sin x+\frac{1}{3} \sin ^{3} x+C$.
2. Let $u=3 x+1$. Then $d u=3 d x \Rightarrow$

$$
\int_{0}^{1}(3 x+1)^{\sqrt{2}} d x=\int_{1}^{4} u^{\sqrt{2}}\left(\frac{1}{3} d u\right)=\frac{1}{3}\left[\frac{1}{\sqrt{2}+1} u^{\sqrt{2}+1}\right]_{1}^{4}=\frac{1}{3(\sqrt{2}+1)}\left(4^{\sqrt{2}+1}-1\right)
$$

3. $\int \frac{\sin x+\sec x}{\tan x} d x=\int\left(\frac{\sin x}{\tan x}+\frac{\sec x}{\tan x}\right) d x=\int(\cos x+\csc x) d x=\sin x+\ln |\csc x-\cot x|+C$
4. $\int \frac{\sin ^{3} x}{\cos x} d x=\int \frac{\sin ^{2} x \sin x}{\cos x} d x=\int \frac{\left(1-\cos ^{2} x\right) \sin x}{\cos x} d x=\int \frac{1-u^{2}}{u}(-d u) \quad\left[\begin{array}{c}u=\cos x \\ d u=-\sin x d x\end{array}\right]$

$$
=\int\left(u-\frac{1}{u}\right) d u=\frac{1}{2} u^{2}-\ln |u|+C=\frac{1}{2} \cos ^{2} x-\ln |\cos x|+C
$$

5. Let $u=t^{2}$. Then $d u=2 t d t \quad \Rightarrow$

$$
\int \frac{t}{t^{4}+2} d t=\int \frac{1}{u^{2}+2}\left(\frac{1}{2} d u\right)=\frac{1}{2} \frac{1}{\sqrt{2}} \tan ^{-1}\left(\frac{u}{\sqrt{2}}\right)+C \text { [by Formula 17] }=\frac{1}{2 \sqrt{2}} \tan ^{-1}\left(\frac{t^{2}}{\sqrt{2}}\right)+C
$$

6. Let $u=2 x+1$. Then $d u=2 d x \Rightarrow$

$$
\begin{aligned}
\int_{0}^{1} \frac{x}{(2 x+1)^{3}} d x & =\int_{1}^{3} \frac{(u-1) / 2}{u^{3}}\left(\frac{1}{2} d u\right)=\frac{1}{4} \int_{1}^{3}\left(\frac{1}{u^{2}}-\frac{1}{u^{3}}\right) d u=\frac{1}{4}\left[-\frac{1}{u}+\frac{1}{2 u^{2}}\right]_{1}^{3} \\
& =\frac{1}{4}\left[\left(-\frac{1}{3}+\frac{1}{18}\right)-\left(-1+\frac{1}{2}\right)\right]=\frac{1}{4}\left(\frac{2}{9}\right)=\frac{1}{18}
\end{aligned}
$$

7. Let $u=\arctan y$. Then $d u=\frac{d y}{1+y^{2}} \Rightarrow \int_{-1}^{1} \frac{e^{\arctan y}}{1+y^{2}} d y=\int_{-\pi / 4}^{\pi / 4} e^{u} d u=\left[e^{u}\right]_{-\pi / 4}^{\pi / 4}=e^{\pi / 4}-e^{-\pi / 4}$.
8. $\int t \sin t \cos t d t=\int t \cdot \frac{1}{2}(2 \sin t \cos t) d t=\frac{1}{2} \int t \sin 2 t d t$

$$
\begin{aligned}
& =\frac{1}{2}\left(-\frac{1}{2} t \cos 2 t-\int-\frac{1}{2} \cos 2 t d t\right) \quad\left[\begin{array}{rl}
u & =t, \quad d v=\sin 2 t d t \\
d u & =d t, \quad v=-\frac{1}{2} \cos 2 t
\end{array}\right] \\
& =-\frac{1}{4} t \cos 2 t+\frac{1}{4} \int \cos 2 t d t=-\frac{1}{4} t \cos 2 t+\frac{1}{8} \sin 2 t+C
\end{aligned}
$$

9. $\int_{1}^{3} r^{4} \ln r d r \quad\left[\begin{array}{rlr}u & =\ln r, & d v \\ =r^{4} d r, \\ d u & =\frac{d r}{r} & v\end{array}\right)=\frac{1}{5} r^{5}, ~\left[\frac{1}{5} r^{5} \ln r\right]_{1}^{3}-\int_{1}^{3} \frac{1}{5} r^{4} d r=\frac{243}{5} \ln 3-0-\left[\frac{1}{25} r^{5}\right]_{1}^{3}$

$$
=\frac{243}{5} \ln 3-\left(\frac{243}{25}-\frac{1}{25}\right)=\frac{243}{5} \ln 3-\frac{242}{25}
$$

10. $\frac{x-1}{x^{2}-4 x-5}=\frac{x-1}{(x-5)(x+1)}=\frac{A}{x-5}+\frac{B}{x+1} \Rightarrow x-1=A(x+1)+B(x-5)$. Setting $x=-1$ gives $-2=-6 B$, so $B=\frac{1}{3}$. Setting $x=5$ gives $4=6 A$, so $A=\frac{2}{3}$. Now

$$
\begin{aligned}
\int_{0}^{4} \frac{x-1}{x^{2}-4 x-5} d x & =\int_{0}^{4}\left(\frac{2 / 3}{x-5}+\frac{1 / 3}{x+1}\right) d x=\left[\frac{2}{3} \ln |x-5|+\frac{1}{3} \ln |x+1|\right]_{0}^{4} \\
& =\frac{2}{3} \ln 1+\frac{1}{3} \ln 5-\frac{2}{3} \ln 5-\frac{1}{3} \ln 1=-\frac{1}{3} \ln 5
\end{aligned}
$$

11. $\int \frac{x-1}{x^{2}-4 x+5} d x=\int \frac{(x-2)+1}{(x-2)^{2}+1} d x=\int\left(\frac{u}{u^{2}+1}+\frac{1}{u^{2}+1}\right) d u \quad[u=x-2, d u=d x]$

$$
=\frac{1}{2} \ln \left(u^{2}+1\right)+\tan ^{-1} u+C=\frac{1}{2} \ln \left(x^{2}-4 x+5\right)+\tan ^{-1}(x-2)+C
$$

12. $\int \frac{x}{x^{4}+x^{2}+1} d x=\int \frac{\frac{1}{2} d u}{u^{2}+u+1}\left[\begin{array}{c}u=x^{2}, \\ d u=2 x d x\end{array}\right]=\frac{1}{2} \int \frac{d u}{\left(u+\frac{1}{2}\right)^{2}+\frac{3}{4}}$

$$
\begin{aligned}
& =\frac{1}{2} \int \frac{\frac{\sqrt{3}}{2} d v}{\frac{3}{4}\left(v^{2}+1\right)}\left[\begin{array}{c}
u+\frac{1}{2}=\frac{\sqrt{3}}{2} v, \\
d u=\frac{\sqrt{3}}{2} d v
\end{array}\right]=\frac{\sqrt{3}}{4} \cdot \frac{4}{3} \int \frac{d v}{v^{2}+1} \\
& =\frac{1}{\sqrt{3}} \tan ^{-1} v+C=\frac{1}{\sqrt{3}} \tan ^{-1}\left(\frac{2}{\sqrt{3}}\left(x^{2}+\frac{1}{2}\right)\right)+C
\end{aligned}
$$

13. $\int \sin ^{5} t \cos ^{4} t d t=\int \sin ^{4} t \cos ^{4} t \sin t d t=\int\left(\sin ^{2} t\right)^{2} \cos ^{4} t \sin t d t$

$$
\begin{aligned}
& =\int\left(1-\cos ^{2} t\right)^{2} \cos ^{4} t \sin t d t=\int\left(1-u^{2}\right)^{2} u^{4}(-d u) \quad[u=\cos t, d u=-\sin t d t] \\
& =\int\left(-u^{4}+2 u^{6}-u^{8}\right) d u=-\frac{1}{5} u^{5}+\frac{2}{7} u^{7}-\frac{1}{9} u^{9}+C=-\frac{1}{5} \cos ^{5} t+\frac{2}{7} \cos ^{7} t-\frac{1}{9} \cos ^{9} t+C
\end{aligned}
$$

14. Let $u=1+x^{2}$, so that $d u=2 x d x$. Then

$$
\begin{aligned}
\int \frac{x^{3}}{\sqrt{1+x^{2}}} d x & =\int \frac{x^{2}}{\sqrt{1+x^{2}}}(x d x)=\int \frac{u-1}{u^{1 / 2}}\left(\frac{1}{2} d u\right)=\frac{1}{2} \int\left(u^{1 / 2}-u^{-1 / 2}\right) d u=\frac{1}{2}\left(\frac{2}{3} u^{3 / 2}-2 u^{1 / 2}\right)+C \\
& =\frac{1}{3}\left(1+x^{2}\right)^{3 / 2}-\left(1+x^{2}\right)^{1 / 2}+C \quad\left[\text { or } \frac{1}{3}\left(x^{2}-2\right) \sqrt{1+x^{2}}+C\right]
\end{aligned}
$$

15. Let $x=\sin \theta$, where $-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}$. Then $d x=\cos \theta d \theta$ and $\left(1-x^{2}\right)^{1 / 2}=\cos \theta$, so

$$
\int \frac{d x}{\left(1-x^{2}\right)^{3 / 2}}=\int \frac{\cos \theta d \theta}{(\cos \theta)^{3}}=\int \sec ^{2} \theta d \theta=\tan \theta+C=\frac{x}{\sqrt{1-x^{2}}}+C
$$

16. $\int_{0}^{\sqrt{2} / 2} \frac{x^{2}}{\sqrt{1-x^{2}}} d x=\int_{0}^{\pi / 4} \frac{\sin ^{2} \theta}{\cos \theta} \cos \theta d \theta \quad\left[\begin{array}{c}u=\sin \theta, \\ d u=\cos \theta d \theta\end{array}\right]$

$$
=\int_{0}^{\pi / 4} \frac{1}{2}(1-\cos 2 \theta) d \theta=\frac{1}{2}\left[\theta-\frac{1}{2} \sin 2 \theta\right]_{0}^{\pi / 4}=\frac{1}{2}\left[\left(\frac{\pi}{4}-\frac{1}{2}\right)-(0-0)\right]=\frac{\pi}{8}-\frac{1}{4}
$$

17. $\int_{0}^{\pi} t \cos ^{2} t d t=\int_{0}^{\pi} t\left[\frac{1}{2}(1+\cos 2 t)\right] d t=\frac{1}{2} \int_{0}^{\pi} t d t+\frac{1}{2} \int_{0}^{\pi} t \cos 2 t d t$

$$
\begin{aligned}
& =\frac{1}{2}\left[\frac{1}{2} t^{2}\right]_{0}^{\pi}+\frac{1}{2}\left[\frac{1}{2} t \sin 2 t\right]_{0}^{\pi}-\frac{1}{2} \int_{0}^{\pi} \frac{1}{2} \sin 2 t d t \quad\left[\begin{array}{c}
u=t, \quad d v=\cos 2 t d t \\
d u=d t, \quad v=\frac{1}{2} \sin 2 t
\end{array}\right] \\
& =\frac{1}{4} \pi^{2}+0-\frac{1}{4}\left[-\frac{1}{2} \cos 2 t\right]_{0}^{\pi}=\frac{1}{4} \pi^{2}+\frac{1}{8}(1-1)=\frac{1}{4} \pi^{2}
\end{aligned}
$$

18. Let $u=\sqrt{t}$. Then $d u=\frac{1}{2 \sqrt{t}} d t \Rightarrow \int_{1}^{4} \frac{e^{\sqrt{t}}}{\sqrt{t}} d t=\int_{1}^{2} e^{u}(2 d u)=2\left[e^{u}\right]_{1}^{2}=2\left(e^{2}-e\right)$.
19. Let $u=e^{x}$. Then $\int e^{x+e^{x}} d x=\int e^{e^{x}} e^{x} d x=\int e^{u} d u=e^{u}+C=e^{e^{x}}+C$.
20. Since e^{2} is a constant, $\int e^{2} d x=e^{2} x+C$.
21. Let $t=\sqrt{x}$, so that $t^{2}=x$ and $2 t d t=d x$. Then $\int \arctan \sqrt{x} d x=\int \arctan t(2 t d t)=I$. Now use parts with $u=\arctan t, d v=2 t d t \quad \Rightarrow \quad d u=\frac{1}{1+t^{2}} d t, v=t^{2}$. Thus, $I=t^{2} \arctan t-\int \frac{t^{2}}{1+t^{2}} d t=t^{2} \arctan t-\int\left(1-\frac{1}{1+t^{2}}\right) d t=t^{2} \arctan t-t+\arctan t+C$ $=x \arctan \sqrt{x}-\sqrt{x}+\arctan \sqrt{x}+C \quad[$ or $(x+1) \arctan \sqrt{x}-\sqrt{x}+C]$
22. Let $u=1+(\ln x)^{2}$, so that $d u=\frac{2 \ln x}{x} d x$. Then $\int \frac{\ln x}{x \sqrt{1+(\ln x)^{2}}} d x=\frac{1}{2} \int \frac{1}{\sqrt{u}} d u=\frac{1}{2}(2 \sqrt{u})+C=\sqrt{1+(\ln x)^{2}}+C$.
23. Let $u=1+\sqrt{x}$. Then $x=(u-1)^{2}, d x=2(u-1) d u \quad \Rightarrow$ $\int_{0}^{1}(1+\sqrt{x})^{8} d x=\int_{1}^{2} u^{8} \cdot 2(u-1) d u=2 \int_{1}^{2}\left(u^{9}-u^{8}\right) d u=\left[\frac{1}{5} u^{10}-2 \cdot \frac{1}{9} u^{9}\right]_{1}^{2}=\frac{1024}{5}-\frac{1024}{9}-\frac{1}{5}+\frac{2}{9}=\frac{4097}{45}$.
24. $\int_{0}^{4} \frac{6 z+5}{2 z+1} d z=\int_{0}^{4} \frac{6 z+3+2}{2 z+1} d z=\int_{0}^{4} \frac{3(2 z+1)+2}{2 z+1} d z=\int_{0}^{4}\left(3+\frac{2}{2 z+1}\right) d z$

$$
=[3 z+\ln |2 z+1|]_{0}^{4}=12+\ln 9
$$

25. $\frac{3 x^{2}-2}{x^{2}-2 x-8}=3+\frac{6 x+22}{(x-4)(x+2)}=3+\frac{A}{x-4}+\frac{B}{x+2} \quad \Rightarrow \quad 6 x+22=A(x+2)+B(x-4)$. Setting $x=4$ gives $46=6 A$, so $A=\frac{23}{3}$. Setting $x=-2$ gives $10=-6 B$, so $B=-\frac{5}{3}$. Now
$\int \frac{3 x^{2}-2}{x^{2}-2 x-8} d x=\int\left(3+\frac{23 / 3}{x-4}-\frac{5 / 3}{x+2}\right) d x=3 x+\frac{23}{3} \ln |x-4|-\frac{5}{3} \ln |x+2|+C$.
26. $\int \frac{3 x^{2}-2}{x^{3}-2 x-8} d x=\int \frac{d u}{u} \quad\left[\begin{array}{rl}u & =x^{3}-2 x-8, \\ d u & =\left(3 x^{2}-2\right) d x\end{array}\right]=\ln |u|+C=\ln \left|x^{3}-2 x-8\right|+C$
27. Let $u=1+e^{x}$, so that $d u=e^{x} d x=(u-1) d x$. Then $\int \frac{1}{1+e^{x}} d x=\int \frac{1}{u} \cdot \frac{d u}{u-1}=\int \frac{1}{u(u-1)} d u=I$. Now $\frac{1}{u(u-1)}=\frac{A}{u}+\frac{B}{u-1} \Rightarrow 1=A(u-1)+B u$. Set $u=1$ to get $1=B$. Set $u=0$ to get $1=-A$, so $A=-1$. Thus, $I=\int\left(\frac{-1}{u}+\frac{1}{u-1}\right) d u=-\ln |u|+\ln |u-1|+C=-\ln \left(1+e^{x}\right)+\ln e^{x}+C=x-\ln \left(1+e^{x}\right)+C$.

Another method: Multiply numerator and denominator by e^{-x} and let $u=e^{-x}+1$. This gives the answer in the form $-\ln \left(e^{-x}+1\right)+C$.
28. $\int \sin \sqrt{a t} d t=\int \sin u \cdot \frac{2}{a} u d u \quad\left[u=\sqrt{a t}, u^{2}=a t, 2 u d u=a d t\right]=\frac{2}{a} \int u \sin u d u$

$$
\begin{aligned}
& =\frac{2}{a}[-u \cos u+\sin u]+C \quad[\text { integration by parts }]=-\frac{2}{a} \sqrt{a t} \cos \sqrt{a t}+\frac{2}{a} \sin \sqrt{a t}+C \\
& =-2 \sqrt{\frac{t}{a}} \cos \sqrt{a t}+\frac{2}{a} \sin \sqrt{a t}+C
\end{aligned}
$$

29. Use integration by parts with $u=\ln \left(x+\sqrt{x^{2}-1}\right), d v=d x \quad \Rightarrow$

$$
\begin{aligned}
& d u=\frac{1}{x+\sqrt{x^{2}-1}}\left(1+\frac{x}{\sqrt{x^{2}-1}}\right) d x=\frac{1}{x+\sqrt{x^{2}-1}}\left(\frac{\sqrt{x^{2}-1}+x}{\sqrt{x^{2}-1}}\right) d x=\frac{1}{\sqrt{x^{2}-1}} d x, v=x . \text { Then } \\
& \int \ln \left(x+\sqrt{x^{2}-1}\right) d x=x \ln \left(x+\sqrt{x^{2}-1}\right)-\int \frac{x}{\sqrt{x^{2}-1}} d x=x \ln \left(x+\sqrt{x^{2}-1}\right)-\sqrt{x^{2}-1}+C .
\end{aligned}
$$

30. $\left|e^{x}-1\right|=\left\{\begin{array}{ll}e^{x}-1 & \text { if } e^{x}-1 \geq 0 \\ -\left(e^{x}-1\right) & \text { if } e^{x}-1<0\end{array}= \begin{cases}e^{x}-1 & \text { if } x \geq 0 \\ 1-e^{x} & \text { if } x<0\end{cases}\right.$

Thus, $\int_{-1}^{2}\left|e^{x}-1\right| d x=\int_{-1}^{0}\left(1-e^{x}\right) d x+\int_{0}^{2}\left(e^{x}-1\right) d x=\left[x-e^{x}\right]_{-1}^{0}+\left[e^{x}-x\right]_{0}^{2}$

$$
=(0-1)-\left(-1-e^{-1}\right)+\left(e^{2}-2\right)-(1-0)=e^{2}+e^{-1}-3
$$

31.

As in Example 5,
$\int \sqrt{\frac{1+x}{1-x}} d x=\int \frac{\sqrt{1+x}}{\sqrt{1-x}} \cdot \frac{\sqrt{1+x}}{\sqrt{1+x}} d x=\int \frac{1+x}{\sqrt{1-x^{2}}} d x=\int \frac{d x}{\sqrt{1-x^{2}}}+\int \frac{x d x}{\sqrt{1-x^{2}}}=\sin ^{-1} x-\sqrt{1-x^{2}}+C$.
Another method: Substitute $u=\sqrt{(1+x) /(1-x)}$.
32. $\int \frac{\sqrt{2 x-1}}{2 x+3} d x=\int \frac{u \cdot u d u}{u^{2}+4} \quad\left[\begin{array}{c}u=\sqrt{2 x-1}, 2 x+3=u^{2}+4, \\ u^{2}=2 x-1, u d u=d x\end{array}\right]=\int\left(1-\frac{4}{u^{2}+4}\right) d u$

$$
=u-4 \cdot \frac{1}{2} \tan ^{-1}\left(\frac{1}{2} u\right)+C=\sqrt{2 x-1}-2 \tan ^{-1}\left(\frac{1}{2} \sqrt{2 x-1}\right)+C
$$

33. $3-2 x-x^{2}=-\left(x^{2}+2 x+1\right)+4=4-(x+1)^{2}$. Let $x+1=2 \sin \theta$, where $-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}$. Then $d x=2 \cos \theta d \theta$ and

$$
\begin{aligned}
\int \sqrt{3-2 x-x^{2}} d x & =\int \sqrt{4-(x+1)^{2}} d x=\int \sqrt{4-4 \sin ^{2} \theta} 2 \cos \theta d \theta \\
& =4 \int \cos ^{2} \theta d \theta=2 \int(1+\cos 2 \theta) d \theta \\
& =2 \theta+\sin 2 \theta+C=2 \theta+2 \sin \theta \cos \theta+C \\
& =2 \sin ^{-1}\left(\frac{x+1}{2}\right)+2 \cdot \frac{x+1}{2} \cdot \frac{\sqrt{3-2 x-x^{2}}}{2}+C \\
& =2 \sin ^{-1}\left(\frac{x+1}{2}\right)+\frac{x+1}{2} \sqrt{3-2 x-x^{2}}+C
\end{aligned}
$$

34. $\int_{\pi / 4}^{\pi / 2} \frac{1+4 \cot x}{4-\cot x} d x=\int_{\pi / 4}^{\pi / 2}\left[\frac{(1+4 \cos x / \sin x)}{(4-\cos x / \sin x)} \cdot \frac{\sin x}{\sin x}\right] d x=\int_{\pi / 4}^{\pi / 2} \frac{\sin x+4 \cos x}{4 \sin x-\cos x} d x$

$$
\begin{aligned}
& =\int_{3 / \sqrt{2}}^{4} \frac{1}{u} d u \quad\left[\begin{array}{c}
u=4 \sin x-\cos x \\
d u=(4 \cos x+\sin x) d x
\end{array}\right] \\
& =[\ln |u|]_{3 / \sqrt{2}}^{4}=\ln 4-\ln \frac{3}{\sqrt{2}}=\ln \frac{4}{3 / \sqrt{2}}=\ln \left(\frac{4}{3} \sqrt{2}\right)
\end{aligned}
$$

35. Using product formula 2(c) in Section 7.2,
$\cos 2 x \cos 6 x=\frac{1}{2}[\cos (2 x-6 x)+\cos (2 x+6 x)]=\frac{1}{2}[\cos (-4 x)+\cos 8 x]=\frac{1}{2}(\cos 4 x+\cos 8 x)$. Thus, $\int \cos 2 x \cos 6 x d x=\frac{1}{2} \int(\cos 4 x+\cos 8 x) d x=\frac{1}{2}\left(\frac{1}{4} \sin 4 x+\frac{1}{8} \sin 8 x\right)+C=\frac{1}{8} \sin 4 x+\frac{1}{16} \sin 8 x+C$.
36. The integrand is an odd function, so $\int_{-\pi / 4}^{\pi / 4} \frac{x^{2} \tan x}{1+\cos ^{4} x} d x=0 \quad$ [by 4.5.6(b)].
37. Let $u=\tan \theta$. Then $d u=\sec ^{2} \theta d \theta \Rightarrow \int_{0}^{\pi / 4} \tan ^{3} \theta \sec ^{2} \theta d \theta=\int_{0}^{1} u^{3} d u=\left[\frac{1}{4} u^{4}\right]_{0}^{1}=\frac{1}{4}$.
38. $\int_{\pi / 6}^{\pi / 3} \frac{\sin \theta \cot \theta}{\sec \theta} d \theta=\int_{\pi / 6}^{\pi / 3} \cos ^{2} \theta d \theta=\frac{1}{2} \int_{\pi / 6}^{\pi / 3}(1+\cos 2 \theta) d \theta=\frac{1}{2}\left[\theta+\frac{1}{2} \sin 2 \theta\right]_{\pi / 6}^{\pi / 3}$ $=\frac{1}{2}\left[\left(\frac{\pi}{3}+\frac{\sqrt{3}}{4}\right)-\left(\frac{\pi}{6}+\frac{\sqrt{3}}{4}\right)\right]=\frac{1}{2}\left(\frac{\pi}{6}\right)=\frac{\pi}{12}$
39. Let $u=\sec \theta$, so that $d u=\sec \theta \tan \theta d \theta$. Then $\int \frac{\sec \theta \tan \theta}{\sec ^{2} \theta-\sec \theta} d \theta=\int \frac{1}{u^{2}-u} d u=\int \frac{1}{u(u-1)} d u=I$. Now $\frac{1}{u(u-1)}=\frac{A}{u}+\frac{B}{u-1} \Rightarrow 1=A(u-1)+B u$. Set $u=1$ to get $1=B$. Set $u=0$ to get $1=-A$, so $A=-1$.

Thus, $I=\int\left(\frac{-1}{u}+\frac{1}{u-1}\right) d u=-\ln |u|+\ln |u-1|+C=\ln |\sec \theta-1|-\ln |\sec \theta|+C[$ or $\ln |1-\cos \theta|+C]$.
40. $4 y^{2}-4 y-3=(2 y-1)^{2}-2^{2}$, so let $u=2 y-1 \Rightarrow d u=2 d y$. Thus,

$$
\begin{aligned}
\int \frac{d y}{\sqrt{4 y^{2}-4 y-3}} & =\int \frac{d y}{\sqrt{(2 y-1)^{2}-2^{2}}}=\frac{1}{2} \int \frac{d u}{\sqrt{u^{2}-2^{2}}} \\
& =\frac{1}{2} \ln \left|u+\sqrt{u^{2}-2^{2}}\right| \quad \text { [by Formula } 20 \text { in the table in this section] } \\
& =\frac{1}{2} \ln \left|2 y-1+\sqrt{4 y^{2}-4 y-3}\right|+C
\end{aligned}
$$

41. Let $u=\theta, d v=\tan ^{2} \theta d \theta=\left(\sec ^{2} \theta-1\right) d \theta \Rightarrow d u=d \theta$ and $v=\tan \theta-\theta$. So

$$
\begin{aligned}
\int \theta \tan ^{2} \theta d \theta & =\theta(\tan \theta-\theta)-\int(\tan \theta-\theta) d \theta=\theta \tan \theta-\theta^{2}-\ln |\sec \theta|+\frac{1}{2} \theta^{2}+C \\
& =\theta \tan \theta-\frac{1}{2} \theta^{2}-\ln |\sec \theta|+C
\end{aligned}
$$

42.

Let $u=\tan ^{-1} x, d v=\frac{1}{x^{2}} d x \quad \Rightarrow \quad d u=\frac{1}{1+x^{2}} d x, v=-\frac{1}{x}$. Then
$I=\int \frac{\tan ^{-1} x}{x^{2}} d x=-\frac{1}{x} \tan ^{-1} x-\int\left(-\frac{1}{x\left(1+x^{2}\right)}\right) d x=-\frac{1}{x} \tan ^{-1} x+\int\left(\frac{A}{x}+\frac{B x+C}{1+x^{2}}\right) d x$
$\frac{1}{x\left(1+x^{2}\right)}=\frac{A}{x}+\frac{B x+C}{1+x^{2}} \Rightarrow 1=A\left(1+x^{2}\right)+(B x+C) x \Rightarrow 1=(A+B) x^{2}+C x+A$, so $C=0, A=1$,
and $A+B=0 \Rightarrow B=-1$. Thus,

$$
\begin{aligned}
I & =-\frac{1}{x} \tan ^{-1} x+\int\left(\frac{1}{x}-\frac{x}{1+x^{2}}\right) d x=-\frac{1}{x} \tan ^{-1} x+\ln |x|-\frac{1}{2} \ln \left|1+x^{2}\right|+C \\
& =-\frac{\tan ^{-1} x}{x}+\ln \left|\frac{x}{\sqrt{x^{2}+1}}\right|+C
\end{aligned}
$$

Or: Let $x=\tan \theta$, so that $d x=\sec ^{2} \theta d \theta$. Then $\int \frac{\tan ^{-1} x}{x^{2}} d x=\int \frac{\theta}{\tan ^{2} \theta} \sec ^{2} \theta d \theta=\int \theta \csc ^{2} \theta d \theta=I$. Now use parts with $u=\theta, d v=\csc ^{2} \theta d \theta \Rightarrow d u=d \theta, v=-\cot \theta$. Thus,

$$
\begin{aligned}
I & =-\theta \cot \theta-\int(-\cot \theta) d \theta=-\theta \cot \theta+\ln |\sin \theta|+C \\
& =-\tan ^{-1} x \cdot \frac{1}{x}+\ln \left|\frac{x}{\sqrt{x^{2}+1}}\right|+C=-\frac{\tan ^{-1} x}{x}+\ln \left|\frac{x}{\sqrt{x^{2}+1}}\right|+C
\end{aligned}
$$

43. Let $u=\sqrt{x}$ so that $d u=\frac{1}{2 \sqrt{x}} d x$. Then

$$
\begin{aligned}
\int \frac{\sqrt{x}}{1+x^{3}} d x & =\int \frac{u}{1+u^{6}}(2 u d u)=2 \int \frac{u^{2}}{1+\left(u^{3}\right)^{2}} d u=2 \int \frac{1}{1+t^{2}}\left(\frac{1}{3} d t\right) \quad\left[\begin{array}{c}
t=u^{3} \\
d t=3 u^{2} d u
\end{array}\right] \\
& =\frac{2}{3} \tan ^{-1} t+C=\frac{2}{3} \tan ^{-1} u^{3}+C=\frac{2}{3} \tan ^{-1}\left(x^{3 / 2}\right)+C
\end{aligned}
$$

Another method: Let $u=x^{3 / 2}$ so that $u^{2}=x^{3}$ and $d u=\frac{3}{2} x^{1 / 2} d x \Rightarrow \sqrt{x} d x=\frac{2}{3} d u$. Then

$$
\int \frac{\sqrt{x}}{1+x^{3}} d x=\int \frac{\frac{2}{3}}{1+u^{2}} d u=\frac{2}{3} \tan ^{-1} u+C=\frac{2}{3} \tan ^{-1}\left(x^{3 / 2}\right)+C .
$$

44. Let $u=\sqrt{1+e^{x}}$. Then $u^{2}=1+e^{x}, 2 u d u=e^{x} d x=\left(u^{2}-1\right) d x$, and $d x=\frac{2 u}{u^{2}-1} d u$, so

$$
\begin{aligned}
\int \sqrt{1+e^{x}} d x & =\int u \cdot \frac{2 u}{u^{2}-1} d u=\int \frac{2 u^{2}}{u^{2}-1} d u=\int\left(2+\frac{2}{u^{2}-1}\right) d u=\int\left(2+\frac{1}{u-1}-\frac{1}{u+1}\right) d u \\
& =2 u+\ln |u-1|-\ln |u+1|+C=2 \sqrt{1+e^{x}}+\ln \left(\sqrt{1+e^{x}}-1\right)-\ln \left(\sqrt{1+e^{x}}+1\right)+C
\end{aligned}
$$

45. Let $t=x^{3}$. Then $d t=3 x^{2} d x \Rightarrow I=\int x^{5} e^{-x^{3}} d x=\frac{1}{3} \int t e^{-t} d t$. Now integrate by parts with $u=t, d v=e^{-t} d t$: $I=-\frac{1}{3} t e^{-t}+\frac{1}{3} \int e^{-t} d t=-\frac{1}{3} t e^{-t}-\frac{1}{3} e^{-t}+C=-\frac{1}{3} e^{-x^{3}}\left(x^{3}+1\right)+C$.
46. Use integration by parts with $u=(x-1) e^{x}, d v=\frac{1}{x^{2}} d x \Rightarrow d u=\left[(x-1) e^{x}+e^{x}\right] d x=x e^{x} d x, v=-\frac{1}{x}$. Then $\int \frac{(x-1) e^{x}}{x^{2}} d x=(x-1) e^{x}\left(-\frac{1}{x}\right)-\int-e^{x} d x=-e^{x}+\frac{e^{x}}{x}+e^{x}+C=\frac{e^{x}}{x}+C$.
47. Let $u=x-1$, so that $d u=d x$. Then

$$
\begin{aligned}
\int x^{3}(x-1)^{-4} d x & =\int(u+1)^{3} u^{-4} d u=\int\left(u^{3}+3 u^{2}+3 u+1\right) u^{-4} d u=\int\left(u^{-1}+3 u^{-2}+3 u^{-3}+u^{-4}\right) d u \\
& =\ln |u|-3 u^{-1}-\frac{3}{2} u^{-2}-\frac{1}{3} u^{-3}+C=\ln |x-1|-3(x-1)^{-1}-\frac{3}{2}(x-1)^{-2}-\frac{1}{3}(x-1)^{-3}+C
\end{aligned}
$$

48. Let $u=\sqrt{1-x^{2}}$, so $u^{2}=1-x^{2}$, and $2 u d u=-2 x d x$. Then $\int_{0}^{1} x \sqrt{2-\sqrt{1-x^{2}}} d x=\int_{1}^{0} \sqrt{2-u}(-u d u)$. Now let $v=\sqrt{2-u}$, so $v^{2}=2-u$, and $2 v d v=-d u$. Thus,

$$
\begin{aligned}
\int_{1}^{0} \sqrt{2-u}(-u d u) & =\int_{1}^{\sqrt{2}} v\left(2-v^{2}\right)(2 v d v)=\int_{1}^{\sqrt{2}}\left(4 v^{2}-2 v^{4}\right) d v=\left[\frac{4}{3} v^{3}-\frac{2}{5} v^{5}\right]_{1}^{\sqrt{2}} \\
& =\left(\frac{8}{3} \sqrt{2}-\frac{8}{5} \sqrt{2}\right)-\left(\frac{4}{3}-\frac{2}{5}\right)=\frac{16}{15} \sqrt{2}-\frac{14}{15}
\end{aligned}
$$

49. Let $u=\sqrt{4 x+1} \Rightarrow u^{2}=4 x+1 \Rightarrow 2 u d u=4 d x \Rightarrow d x=\frac{1}{2} u d u$. So

$$
\begin{aligned}
\int \frac{1}{x \sqrt{4 x+1}} d x & =\int \frac{\frac{1}{2} u d u}{\frac{1}{4}\left(u^{2}-1\right) u}=2 \int \frac{d u}{u^{2}-1}=2\left(\frac{1}{2}\right) \ln \left|\frac{u-1}{u+1}\right|+C \quad \text { [by Formula 19] } \\
& =\ln \left|\frac{\sqrt{4 x+1}-1}{\sqrt{4 x+1}+1}\right|+C
\end{aligned}
$$

50. As in Exercise 49, let $u=\sqrt{4 x+1}$. Then $\int \frac{d x}{x^{2} \sqrt{4 x+1}}=\int \frac{\frac{1}{2} u d u}{\left[\frac{1}{4}\left(u^{2}-1\right)\right]^{2} u}=8 \int \frac{d u}{\left(u^{2}-1\right)^{2}}$. Now $\frac{1}{\left(u^{2}-1\right)^{2}}=\frac{1}{(u+1)^{2}(u-1)^{2}}=\frac{A}{u+1}+\frac{B}{(u+1)^{2}}+\frac{C}{u-1}+\frac{D}{(u-1)^{2}} \Rightarrow$ $1=A(u+1)(u-1)^{2}+B(u-1)^{2}+C(u-1)(u+1)^{2}+D(u+1)^{2} \cdot u=1 \quad \Rightarrow \quad D=\frac{1}{4}, u=-1 \Rightarrow B=\frac{1}{4}$.

Equating coefficients of u^{3} gives $A+C=0$, and equating coefficients of 1 gives $1=A+B-C+D \Rightarrow$ $1=A+\frac{1}{4}-C+\frac{1}{4} \quad \Rightarrow \quad \frac{1}{2}=A-C$. So $A=\frac{1}{4}$ and $C=-\frac{1}{4}$. Therefore,

$$
\begin{aligned}
\int \frac{d x}{x^{2} \sqrt{4 x+1}} & =8 \int\left[\frac{1 / 4}{u+1}+\frac{1 / 4}{(u+1)^{2}}+\frac{-1 / 4}{u-1}+\frac{1 / 4}{(u-1)^{2}}\right] d u \\
& =\int\left[\frac{2}{u+1}+2(u+1)^{-2}-\frac{2}{u-1}+2(u-1)^{-2}\right] d u \\
& =2 \ln |u+1|-\frac{2}{u+1}-2 \ln |u-1|-\frac{2}{u-1}+C \\
& =2 \ln (\sqrt{4 x+1}+1)-\frac{2}{\sqrt{4 x+1}+1}-2 \ln |\sqrt{4 x+1}-1|-\frac{2}{\sqrt{4 x+1}-1}+C
\end{aligned}
$$

