7.2 Homework

1. $\int \sin ^{2} x \cos ^{3} x d x=\int \sin ^{2} x \cos ^{2} x \cos x d x=\int \sin ^{2} x\left(1-\sin ^{2} x\right) \cos x d x$

$$
\stackrel{\stackrel{s}{=}}{=} u^{2}\left(1-u^{2}\right) d u=\int\left(u^{2}-u^{4}\right) d u=\frac{1}{3} u^{3}-\frac{1}{5} u^{5}+C=\frac{1}{3} \sin ^{3} x-\frac{1}{5} \sin ^{5} x+C
$$

2. $\int \sin ^{3} \theta \cos ^{4} \theta d \theta=\int \sin ^{2} \theta \cos ^{4} \theta \sin \theta d \theta=\int\left(1-\cos ^{2} \theta\right) \cos ^{4} \theta \sin \theta d \theta$

$$
\stackrel{\mathrm{c}}{=} \int\left(1-u^{2}\right) u^{4}(-d u)=\int\left(u^{6}-u^{4}\right) d u=\frac{1}{7} u^{7}-\frac{1}{5} u^{5}+C=\frac{1}{7} \cos ^{7} \theta-\frac{1}{5} \cos ^{5} \theta+C
$$

3. $\int_{0}^{\pi / 2} \sin ^{7} \theta \cos ^{5} \theta d \theta=\int_{0}^{\pi / 2} \sin ^{7} \theta \cos ^{4} \theta \cos \theta d \theta=\int_{0}^{\pi / 2} \sin ^{7} \theta\left(1-\sin ^{2} \theta\right)^{2} \cos \theta d \theta$

$$
\begin{aligned}
& \stackrel{s}{=} \int_{0}^{1} u^{7}\left(1-u^{2}\right)^{2} d u=\int_{0}^{1} u^{7}\left(1-2 u^{2}+u^{4}\right) d u=\int_{0}^{1}\left(u^{7}-2 u^{9}+u^{11}\right) d u \\
& =\left[\frac{1}{8} u^{8}-\frac{1}{5} u^{10}+\frac{1}{12} u^{12}\right]_{0}^{1}=\left(\frac{1}{8}-\frac{1}{5}+\frac{1}{12}\right)-0=\frac{15-24+10}{120}=\frac{1}{120}
\end{aligned}
$$

4. $\int_{0}^{\pi / 2} \sin ^{5} x d x=\int_{0}^{\pi / 2} \sin ^{4} x \sin x d x=\int_{0}^{\pi / 2}\left(1-\cos ^{2} x\right)^{2} \sin x d x \stackrel{\text { c }}{=} \int_{1}^{0}\left(1-u^{2}\right)^{2}(-d u)$

$$
=\int_{0}^{1}\left(1-2 u^{2}+u^{4}\right) d u=\left[u-\frac{2}{3} u^{3}+\frac{1}{5} u^{5}\right]_{0}^{1}=\left(1-\frac{2}{3}+\frac{1}{5}\right)-0=\frac{15-10+3}{15}=\frac{8}{15}
$$

5. Let $y=\pi x$, so $d y=\pi d x$ and

$$
\begin{aligned}
\int \sin ^{2}(\pi x) \cos ^{5}(\pi x) d x & =\frac{1}{\pi} \int \sin ^{2} y \cos ^{5} y d y=\frac{1}{\pi} \int \sin ^{2} y \cos ^{4} y \cos y d y \\
& =\frac{1}{\pi} \int \sin ^{2} y\left(1-\sin ^{2} y\right)^{2} \cos y d y \stackrel{5}{=} \frac{1}{\pi} \int u^{2}\left(1-u^{2}\right)^{2} d u=\frac{1}{\pi} \int\left(u^{2}-2 u^{4}+u^{6}\right) d u \\
& =\frac{1}{\pi}\left(\frac{1}{3} u^{3}-\frac{2}{5} u^{5}+\frac{1}{7} u^{7}\right)+C=\frac{1}{3 \pi} \sin ^{3} y-\frac{2}{5 \pi} \sin ^{5} y+\frac{1}{7 \pi} \sin ^{7} y+C \\
& =\frac{1}{3 \pi} \sin ^{3}(\pi x)-\frac{2}{5 \pi} \sin ^{5}(\pi x)+\frac{1}{7 \pi} \sin ^{7}(\pi x)+C
\end{aligned}
$$

6. Let $y=\sqrt{x}$, so that $d y=\frac{1}{2 \sqrt{x}} d x$ and $d x=2 y d y$. Then

$$
\begin{aligned}
\int \frac{\sin ^{3}(\sqrt{x})}{\sqrt{x}} d x & =\int \frac{\sin ^{3} y}{y}(2 y d y)=2 \int \sin ^{3} y d y=2 \int \sin ^{2} y \sin y d y=2 \int\left(1-\cos ^{2} y\right) \sin y d y \\
& \stackrel{c}{=} 2 \int\left(1-u^{2}\right)(-d u)=2 \int\left(u^{2}-1\right) d u=2\left(\frac{1}{3} u^{3}-u\right)+C=\frac{2}{3} \cos ^{3} y-2 \cos y+C \\
& =\frac{2}{3} \cos ^{3}(\sqrt{x})-2 \cos \sqrt{x}+C
\end{aligned}
$$

7. $\int_{0}^{\pi / 2} \cos ^{2} \theta d \theta=\int_{0}^{\pi / 2} \frac{1}{2}(1+\cos 2 \theta) d \theta \quad$ [half-angle identity]

$$
=\frac{1}{2}\left[\theta+\frac{1}{2} \sin 2 \theta\right]_{0}^{\pi / 2}=\frac{1}{2}\left[\left(\frac{\pi}{2}+0\right)-(0+0)\right]=\frac{\pi}{4}
$$

8. $\int_{0}^{2 \pi} \sin ^{2}\left(\frac{1}{3} \theta\right) d \theta=\int_{0}^{2 \pi} \frac{1}{2}\left[1-\cos \left(2 \cdot \frac{1}{3} \theta\right)\right] d \theta \quad$ [half-angle identity]

$$
=\frac{1}{2}\left[\theta-\frac{3}{2} \sin \left(\frac{2}{3} \theta\right)\right]_{0}^{2 \pi}=\frac{1}{2}\left[\left(2 \pi-\frac{3}{2}\left(-\frac{\sqrt{3}}{2}\right)\right)-0\right]=\pi+\frac{3}{8} \sqrt{3}
$$

9. $\int_{0}^{\pi} \cos ^{4}(2 t) d t=\int_{0}^{\pi}\left[\cos ^{2}(2 t)\right]^{2} d t=\int_{0}^{\pi}\left[\frac{1}{2}(1+\cos (2 \cdot 2 t))\right]^{2} d t \quad$ [half-angle identity]

$$
\begin{aligned}
& =\frac{1}{4} \int_{0}^{\pi}\left[1+2 \cos 4 t+\cos ^{2}(4 t)\right] d t=\frac{1}{4} \int_{0}^{\pi}\left[1+2 \cos 4 t+\frac{1}{2}(1+\cos 8 t)\right] d t \\
& =\frac{1}{4} \int_{0}^{\pi}\left(\frac{3}{2}+2 \cos 4 t+\frac{1}{2} \cos 8 t\right) d t=\frac{1}{4}\left[\frac{3}{2} t+\frac{1}{2} \sin 4 t+\frac{1}{16} \sin 8 t\right]_{0}^{\pi}=\frac{1}{4}\left[\left(\frac{3}{2} \pi+0+0\right)-0\right]=\frac{3}{8} \pi
\end{aligned}
$$

10. $\int_{0}^{\pi} \sin ^{2} t \cos ^{4} t d t=\frac{1}{4} \int_{0}^{\pi}\left(4 \sin ^{2} t \cos ^{2} t\right) \cos ^{2} t d t=\frac{1}{4} \int_{0}^{\pi}(2 \sin t \cos t)^{2} \frac{1}{2}(1+\cos 2 t) d t$

$$
\begin{aligned}
& =\frac{1}{8} \int_{0}^{\pi}(\sin 2 t)^{2}(1+\cos 2 t) d t=\frac{1}{8} \int_{0}^{\pi}\left(\sin ^{2} 2 t+\sin ^{2} 2 t \cos 2 t\right) d t \\
& =\frac{1}{8} \int_{0}^{\pi} \sin ^{2} 2 t d t+\frac{1}{8} \int_{0}^{\pi} \sin ^{2} 2 t \cos 2 t d t=\frac{1}{8} \int_{0}^{\pi} \frac{1}{2}(1-\cos 4 t) d t+\frac{1}{8}\left[\frac{1}{3} \cdot \frac{1}{2} \sin ^{3} 2 t\right]_{0}^{\pi} \\
& =\frac{1}{16}\left[t-\frac{1}{4} \sin 4 t\right]_{0}^{\pi}+\frac{1}{8}(0-0)=\frac{1}{16}[(\pi-0)-0]=\frac{\pi}{16}
\end{aligned}
$$

11. $\int_{0}^{\pi / 2} \sin ^{2} x \cos ^{2} x d x=\int_{0}^{\pi / 2} \frac{1}{4}\left(4 \sin ^{2} x \cos ^{2} x\right) d x=\int_{0}^{\pi / 2} \frac{1}{4}(2 \sin x \cos x)^{2} d x=\frac{1}{4} \int_{0}^{\pi / 2} \sin ^{2} 2 x d x$

$$
=\frac{1}{4} \int_{0}^{\pi / 2} \frac{1}{2}(1-\cos 4 x) d x=\frac{1}{8} \int_{0}^{\pi / 2}(1-\cos 4 x) d x=\frac{1}{8}\left[x-\frac{1}{4} \sin 4 x\right]_{0}^{\pi / 2}=\frac{1}{8}\left(\frac{\pi}{2}\right)=\frac{\pi}{16}
$$

12. $\int_{0}^{\pi / 2}(2-\sin \theta)^{2} d \theta=\int_{0}^{\pi / 2}\left(4-4 \sin \theta+\sin ^{2} \theta\right) d \theta=\int_{0}^{\pi / 2}\left[4-4 \sin \theta+\frac{1}{2}(1-\cos 2 \theta)\right] d \theta$

$$
\begin{aligned}
& =\int_{0}^{\pi / 2}\left(\frac{9}{2}-4 \sin \theta-\frac{1}{2} \cos 2 \theta\right) d \theta=\left[\frac{9}{2} \theta+4 \cos \theta-\frac{1}{4} \sin 2 \theta\right]_{0}^{\pi / 2} \\
& =\left(\frac{9 \pi}{4}+0-0\right)-(0+4-0)=\frac{9}{4} \pi-4
\end{aligned}
$$

13. $\int t \sin ^{2} t d t=\int t\left[\frac{1}{2}(1-\cos 2 t)\right] d t=\frac{1}{2} \int(t-t \cos 2 t) d t=\frac{1}{2} \int t d t-\frac{1}{2} \int t \cos 2 t d t$

$$
\begin{aligned}
& =\frac{1}{2}\left(\frac{1}{2} t^{2}\right)-\frac{1}{2}\left(\frac{1}{2} t \sin 2 t-\int \frac{1}{2} \sin 2 t d t\right) \quad\left[\begin{array}{c}
u=t, \quad d v=\cos 2 t d t \\
d u=d t, \quad v=\frac{1}{2} \sin 2 t
\end{array}\right] \\
& =\frac{1}{4} t^{2}-\frac{1}{4} t \sin 2 t+\frac{1}{2}\left(-\frac{1}{4} \cos 2 t\right)+C=\frac{1}{4} t^{2}-\frac{1}{4} t \sin 2 t-\frac{1}{8} \cos 2 t+C
\end{aligned}
$$

14. Let $u=\sin \theta$. Then $d u=\cos \theta d \theta$ and

$$
\begin{aligned}
\int \cos \theta \cos ^{5}(\sin \theta) d \theta & =\int \cos ^{5} u d u=\int\left(\cos ^{2} u\right)^{2} \cos u d u=\int\left(1-\sin ^{2} u\right)^{2} \cos u d u \\
& =\int\left(1-2 \sin ^{2} u+\sin ^{4} u\right) \cos u d u=I
\end{aligned}
$$

Now let $x=\sin u$. Then $d x=\cos u d u$ and

$$
\begin{aligned}
I & =\int\left(1-2 x^{2}+x^{4}\right) d x=x-\frac{2}{3} x^{3}+\frac{1}{5} x^{5}+C=\sin u-\frac{2}{3} \sin ^{3} u+\frac{1}{5} \sin ^{5} u+C \\
& =\sin (\sin \theta)-\frac{2}{3} \sin ^{3}(\sin \theta)+\frac{1}{5} \sin ^{5}(\sin \theta)+C
\end{aligned}
$$

15. $\int \frac{\cos ^{5} \alpha}{\sqrt{\sin \alpha}} d \alpha=\int \frac{\cos ^{4} \alpha}{\sqrt{\sin \alpha}} \cos \alpha d \alpha=\int \frac{\left(1-\sin ^{2} \alpha\right)^{2}}{\sqrt{\sin \alpha}} \cos \alpha d \alpha \stackrel{s}{=} \int \frac{\left(1-u^{2}\right)^{2}}{\sqrt{u}} d u$

$$
\begin{aligned}
& =\int \frac{1-2 u^{2}+u^{4}}{u^{1 / 2}} d u=\int\left(u^{-1 / 2}-2 u^{3 / 2}+u^{7 / 2}\right) d u=2 u^{1 / 2}-\frac{4}{5} u^{5 / 2}+\frac{2}{9} u^{9 / 2}+C \\
& =\frac{2}{45} u^{1 / 2}\left(45-18 u^{2}+5 u^{4}\right)+C=\frac{2}{45} \sqrt{\sin \alpha}\left(45-18 \sin ^{2} \alpha+5 \sin ^{4} \alpha\right)+C
\end{aligned}
$$

16. $I=\int x \sin ^{3} x d x$. First, evaluate
$\int \sin ^{3} x d x=\int\left(1-\cos ^{2} x\right) \sin x d x \stackrel{\mathrm{c}}{=} \int\left(1-u^{2}\right)(-d u)=\int\left(u^{2}-1\right) d u=\frac{1}{3} u^{3}-u+C_{1}=\frac{1}{3} \cos ^{3} x-\cos x+C_{1}$.
Now for I, let $u=x, d v=\sin ^{3} x \quad \Rightarrow \quad d u=d x, v=\frac{1}{3} \cos ^{3} x-\cos x$, so

$$
\begin{aligned}
I & =\frac{1}{3} x \cos ^{3} x-x \cos x-\int\left(\frac{1}{3} \cos ^{3} x-\cos x\right) d x=\frac{1}{3} x \cos ^{3} x-x \cos x-\frac{1}{3} \int \cos ^{3} x d x+\sin x \\
& =\frac{1}{3} x \cos ^{3} x-x \cos x-\frac{1}{3}\left(\sin x-\frac{1}{3} \sin ^{3} x\right)+\sin x+C \quad \text { [by Example 1] } \\
& =\frac{1}{3} x \cos ^{3} x-x \cos x+\frac{2}{3} \sin x+\frac{1}{9} \sin ^{3} x+C
\end{aligned}
$$

17. $\int \cos ^{2} x \tan ^{3} x d x=\int \frac{\sin ^{3} x}{\cos x} d x \stackrel{\mathrm{c}}{=} \int \frac{\left(1-u^{2}\right)(-d u)}{u}=\int\left[\frac{-1}{u}+u\right] d u$

$$
=-\ln |u|+\frac{1}{2} u^{2}+C=\frac{1}{2} \cos ^{2} x-\ln |\cos x|+C
$$

18. $\int \cot ^{5} \theta \sin ^{4} \theta d \theta=\int \frac{\cos ^{5} \theta}{\sin ^{5} \theta} \sin ^{4} \theta d \theta=\int \frac{\cos ^{5} \theta}{\sin \theta} d \theta=\int \frac{\cos ^{4} \theta}{\sin \theta} \cos \theta d \theta=\int \frac{\left(1-\sin ^{2} \theta\right)^{2}}{\sin \theta} \cos \theta d \theta$

$$
\begin{aligned}
& \stackrel{s}{=} \int \frac{\left(1-u^{2}\right)^{2}}{u} d u=\int \frac{1-2 u^{2}+u^{4}}{u} d u=\int\left(\frac{1}{u}-2 u+u^{3}\right) d u \\
& =\ln |u|-u^{2}+\frac{1}{4} u^{4}+C=\ln |\sin \theta|-\sin ^{2} \theta+\frac{1}{4} \sin ^{4} \theta+C
\end{aligned}
$$

19. $\int \frac{\cos x+\sin 2 x}{\sin x} d x=\int \frac{\cos x+2 \sin x \cos x}{\sin x} d x=\int \frac{\cos x}{\sin x} d x+\int 2 \cos x d x \stackrel{\mathrm{~s}}{=} \int \frac{1}{u} d u+2 \sin x$ $=\ln |u|+2 \sin x+C=\ln |\sin x|+2 \sin x+C$
Or: Use the formula $\int \cot x d x=\ln |\sin x|+C$.
20. $\int \cos ^{2} x \sin 2 x d x=2 \int \cos ^{3} x \sin x d x \stackrel{\mathrm{c}}{=}-2 \int u^{3} d u=-\frac{1}{2} u^{4}+C=-\frac{1}{2} \cos ^{4} x+C$
21. $\int \tan x \sec ^{3} x d x=\int \tan x \sec x \sec ^{2} x d x=\int u^{2} d u \quad[u=\sec x, d u=\sec x \tan x d x]$

$$
=\frac{1}{3} u^{3}+C=\frac{1}{3} \sec ^{3} x+C
$$

22. $\int \tan ^{2} \theta \sec ^{4} \theta d \theta=\int \tan ^{2} \theta \sec ^{2} \theta \sec ^{2} \theta d \theta=\int \tan ^{2} \theta\left(\tan ^{2} \theta+1\right) \sec ^{2} \theta d \theta$

$$
\begin{aligned}
& =\int u^{2}\left(u^{2}+1\right) d u \quad\left[u=\tan \theta, d u=\sec ^{2} \theta d \theta\right] \\
& =\int\left(u^{4}+u^{2}\right) d u=\frac{1}{5} u^{5}+\frac{1}{3} u^{3}+C=\frac{1}{5} \tan ^{5} \theta+\frac{1}{3} \tan ^{3} \theta+C
\end{aligned}
$$

23. $\int \tan ^{2} x d x=\int\left(\sec ^{2} x-1\right) d x=\tan x-x+C$
24. $\int\left(\tan ^{2} x+\tan ^{4} x\right) d x=\int \tan ^{2} x\left(1+\tan ^{2} x\right) d x=\int \tan ^{2} x \sec ^{2} x d x=\int u^{2} d u \quad\left[u=\tan x, d u=\sec ^{2} x d x\right]$ $=\frac{1}{3} u^{3}+C=\frac{1}{3} \tan ^{3} x+C$

Page 3
25. Let $u=\tan x$. Then $d u=\sec ^{2} x d x$, so

$$
\begin{aligned}
\int \tan ^{4} x \sec ^{6} x d x & =\int \tan ^{4} x \sec ^{4} x\left(\sec ^{2} x d x\right)=\int \tan ^{4} x\left(1+\tan ^{2} x\right)^{2}\left(\sec ^{2} x d x\right) \\
& =\int u^{4}\left(1+u^{2}\right)^{2} d u=\int\left(u^{8}+2 u^{6}+u^{4}\right) d u \\
& =\frac{1}{9} u^{9}+\frac{2}{7} u^{7}+\frac{1}{5} u^{5}+C=\frac{1}{9} \tan ^{9} x+\frac{2}{7} \tan ^{7} x+\frac{1}{5} \tan ^{5} x+C
\end{aligned}
$$

26. $\int_{0}^{\pi / 4} \sec ^{4} \theta \tan ^{4} \theta d \theta=\int_{0}^{\pi / 4}\left(\tan ^{2} \theta+1\right) \tan ^{4} \theta \sec ^{2} \theta d \theta=\int_{0}^{1}\left(u^{2}+1\right) u^{4} d u \quad\left[u=\tan \theta, d u=\sec ^{2} \theta d \theta\right]$

$$
=\int_{0}^{1}\left(u^{6}+u^{4}\right) d u=\left[\frac{1}{7} u^{7}+\frac{1}{5} u^{5}\right]_{0}^{1}=\frac{1}{7}+\frac{1}{5}=\frac{12}{35}
$$

27. $\int_{0}^{\pi / 3} \tan ^{5} x \sec ^{4} x d x=\int_{0}^{\pi / 3} \tan ^{5} x\left(\tan ^{2} x+1\right) \sec ^{2} x d x=\int_{0}^{\sqrt{3}} u^{5}\left(u^{2}+1\right) d u \quad\left[u=\tan x, d u=\sec ^{2} x d x\right]$

$$
=\int_{0}^{\sqrt{3}}\left(u^{7}+u^{5}\right) d u=\left[\frac{1}{8} u^{8}+\frac{1}{6} u^{6}\right]_{0}^{\sqrt{3}}=\frac{81}{8}+\frac{27}{6}=\frac{81}{8}+\frac{9}{2}=\frac{81}{8}+\frac{36}{8}=\frac{117}{8}
$$

Alternate solution:

$$
\begin{aligned}
\int_{0}^{\pi / 3} \tan ^{5} x \sec ^{4} x d x & =\int_{0}^{\pi / 3} \tan ^{4} x \sec ^{3} x \sec x \tan x d x=\int_{0}^{\pi / 3}\left(\sec ^{2} x-1\right)^{2} \sec ^{3} x \sec x \tan x d x \\
& =\int_{1}^{2}\left(u^{2}-1\right)^{2} u^{3} d u \quad[u=\sec x, d u=\sec x \tan x d x]=\int_{1}^{2}\left(u^{4}-2 u^{2}+1\right) u^{3} d u \\
& =\int_{1}^{2}\left(u^{7}-2 u^{5}+u^{3}\right) d u=\left[\frac{1}{8} u^{8}-\frac{1}{3} u^{6}+\frac{1}{4} u^{4}\right]_{1}^{2}=\left(32-\frac{64}{3}+4\right)-\left(\frac{1}{8}-\frac{1}{3}+\frac{1}{4}\right)=\frac{117}{8}
\end{aligned}
$$

28. Let $u=\sec x$, so $d u=\sec x \tan x d x$. Thus,

$$
\begin{aligned}
\int \tan ^{5} x \sec ^{3} x d x & =\int \tan ^{4} x \sec ^{2} x(\sec x \tan x) d x=\int\left(\sec ^{2} x-1\right)^{2} \sec ^{2} x(\sec x \tan x d x) \\
& =\int\left(u^{2}-1\right)^{2} u^{2} d u=\int\left(u^{6}-2 u^{4}+u^{2}\right) d u \\
& =\frac{1}{7} u^{7}-\frac{2}{5} u^{5}+\frac{1}{3} u^{3}+C=\frac{1}{7} \sec ^{7} x-\frac{2}{5} \sec ^{5} x+\frac{1}{3} \sec ^{3} x+C
\end{aligned}
$$

29. $\int \tan ^{3} x \sec x d x=\int \tan ^{2} x \sec x \tan x d x=\int\left(\sec ^{2} x-1\right) \sec x \tan x d x$

$$
=\int\left(u^{2}-1\right) d u \quad[u=\sec x, d u=\sec x \tan x d x] \quad=\frac{1}{3} u^{3}-u+C=\frac{1}{3} \sec ^{3} x-\sec x+C
$$

30. $\int_{0}^{\pi / 4} \tan ^{4} t d t=\int_{0}^{\pi / 4} \tan ^{2} t\left(\sec ^{2} t-1\right) d t=\int_{0}^{\pi / 4} \tan ^{2} t \sec ^{2} t d t-\int_{0}^{\pi / 4} \tan ^{2} t d t$

$$
\begin{aligned}
& =\int_{0}^{1} u^{2} d u[u=\tan t]-\int_{0}^{\pi / 4}\left(\sec ^{2} t-1\right) d t=\left[\frac{1}{3} u^{3}\right]_{0}^{1}-[\tan t-t]_{0}^{\pi / 4} \\
& =\frac{1}{3}-\left[\left(1-\frac{\pi}{4}\right)-0\right]=\frac{\pi}{4}-\frac{2}{3}
\end{aligned}
$$

31. $\int \tan ^{5} x d x=\int\left(\sec ^{2} x-1\right)^{2} \tan x d x=\int \sec ^{4} x \tan x d x-2 \int \sec ^{2} x \tan x d x+\int \tan x d x$

$$
\begin{aligned}
& =\int \sec ^{3} x \sec x \tan x d x-2 \int \tan x \sec ^{2} x d x+\int \tan x d x \\
& =\frac{1}{4} \sec ^{4} x-\tan ^{2} x+\ln |\sec x|+C \quad\left[\text { or } \frac{1}{4} \sec ^{4} x-\sec ^{2} x+\ln |\sec x|+C\right]
\end{aligned}
$$

32. $\int \tan ^{2} x \sec x d x=\int\left(\sec ^{2} x-1\right) \sec x d x=\int \sec ^{3} x d x-\int \sec x d x$

$$
\begin{aligned}
& =\frac{1}{2}(\sec x \tan x+\ln |\sec x+\tan x|)-\ln |\sec x+\tan x|+C \quad[\text { by Example } 8 \text { and (1)] } \\
& =\frac{1}{2}(\sec x \tan x-\ln |\sec x+\tan x|)+C
\end{aligned}
$$

33. Let $u=x, d v=\sec x \tan x d x \Rightarrow d u=d x, v=\sec x$. Then
$\int x \sec x \tan x d x=x \sec x-\int \sec x d x=x \sec x-\ln |\sec x+\tan x|+C$.
34. $\int \frac{\sin \phi}{\cos ^{3} \phi} d \phi=\int \frac{\sin \phi}{\cos \phi} \cdot \frac{1}{\cos ^{2} \phi} d \phi=\int \tan \phi \sec ^{2} \phi d \phi=\int u d u \quad\left[u=\tan \phi, d u=\sec ^{2} \phi d \phi\right]$

$$
=\frac{1}{2} u^{2}+C=\frac{1}{2} \tan ^{2} \phi+C
$$

Alternate solution: Let $u=\cos \phi$ to get $\frac{1}{2} \sec ^{2} \phi+C$.
35. $\int_{\pi / 6}^{\pi / 2} \cot ^{2} x d x=\int_{\pi / 6}^{\pi / 2}\left(\csc ^{2} x-1\right) d x=[-\cot x-x]_{\pi / 6}^{\pi / 2}=\left(0-\frac{\pi}{2}\right)-\left(-\sqrt{3}-\frac{\pi}{6}\right)=\sqrt{3}-\frac{\pi}{3}$
36. $\int_{\pi / 4}^{\pi / 2} \cot ^{3} x d x=\int_{\pi / 4}^{\pi / 2} \cot x\left(\csc ^{2} x-1\right) d x=\int_{\pi / 4}^{\pi / 2} \cot x \csc ^{2} x d x-\int_{\pi / 4}^{\pi / 2} \frac{\cos x}{\sin x} d x$

$$
=\left[-\frac{1}{2} \cot ^{2} x-\ln |\sin x|\right]_{\pi / 4}^{\pi / 2}=(0-\ln 1)-\left[-\frac{1}{2}-\ln \frac{1}{\sqrt{2}}\right]=\frac{1}{2}+\ln \frac{1}{\sqrt{2}}=\frac{1}{2}(1-\ln 2)
$$

37.

$\int_{\pi / 4}^{\pi / 2} \cot ^{5} \phi \csc ^{3} \phi d \phi=\int_{\pi / 4}^{\pi / 2} \cot ^{4} \phi \csc ^{2} \phi \csc \phi \cot \phi d \phi=\int_{\pi / 4}^{\pi / 2}\left(\csc ^{2} \phi-1\right)^{2} \csc ^{2} \phi \csc \phi \cot \phi d \phi$

$$
\begin{aligned}
& =\int_{\sqrt{2}}^{1}\left(u^{2}-1\right)^{2} u^{2}(-d u) \quad[u=\csc \phi, d u=-\csc \phi \cot \phi d \phi] \\
& =\int_{1}^{\sqrt{2}}\left(u^{6}-2 u^{4}+u^{2}\right) d u=\left[\frac{1}{7} u^{7}-\frac{2}{5} u^{5}+\frac{1}{3} u^{3}\right]_{1}^{\sqrt{2}}=\left(\frac{8}{7} \sqrt{2}-\frac{8}{5} \sqrt{2}+\frac{2}{3} \sqrt{2}\right)-\left(\frac{1}{7}-\frac{2}{5}+\frac{1}{3}\right) \\
& =\frac{120-168+70}{105} \sqrt{2}-\frac{15-42+35}{105}=\frac{22}{105} \sqrt{2}-\frac{8}{105}
\end{aligned}
$$

38. $\int \csc ^{4} x \cot ^{6} x d x=\int \cot ^{6} x\left(\cot ^{2} x+1\right) \csc ^{2} x d x=\int u^{6}\left(u^{2}+1\right) \cdot(-d u) \quad\left[u=\cot x, d u=-\csc ^{2} x d x\right]$

$$
\begin{aligned}
& =\int u^{6}\left(u^{2}+1\right) \cdot(-d u) \quad\left[u=\cot x, d u=-\csc ^{2} x d x\right] \\
& =\int\left(-u^{8}-u^{6}\right) d u=-\frac{1}{9} u^{9}-\frac{1}{7} u^{7}+C=-\frac{1}{9} \cot ^{9} x-\frac{1}{7} \cot ^{7} x+C
\end{aligned}
$$

39. $I=\int \csc x d x=\int \frac{\csc x(\csc x-\cot x)}{\csc x-\cot x} d x=\int \frac{-\csc x \cot x+\csc ^{2} x}{\csc x-\cot x} d x$. Let $u=\csc x-\cot x \Rightarrow$ $d u=\left(-\csc x \cot x+\csc ^{2} x\right) d x$. Then $I=\int d u / u=\ln |u|=\ln |\csc x-\cot x|+C$.
40. Let $u=\csc x, d v=\csc ^{2} x d x$. Then $d u=-\csc x \cot x d x, v=-\cot x \Rightarrow$

$$
\begin{aligned}
\int \csc ^{3} x d x & =-\csc x \cot x-\int \csc x \cot ^{2} x d x=-\csc x \cot x-\int \csc x\left(\csc ^{2} x-1\right) d x \\
& =-\csc x \cot x+\int \csc x d x-\int \csc ^{3} x d x
\end{aligned}
$$

Solving for $\int \csc ^{3} x d x$ and using Exercise 39, we get
$\int \csc ^{3} x d x=-\frac{1}{2} \csc x \cot x+\frac{1}{2} \int \csc x d x=-\frac{1}{2} \csc x \cot x+\frac{1}{2} \ln |\csc x-\cot x|+C$. Thus,

$$
\begin{aligned}
\int_{\pi / 6}^{\pi / 3} \csc ^{3} x d x & =\left[-\frac{1}{2} \csc x \cot x+\frac{1}{2} \ln |\csc x-\cot x|\right]_{\pi / 6}^{\pi / 3} \\
& =-\frac{1}{2} \cdot \frac{2}{\sqrt{3}} \cdot \frac{1}{\sqrt{3}}+\frac{1}{2} \ln \left|\frac{2}{\sqrt{3}}-\frac{1}{\sqrt{3}}\right|+\frac{1}{2} \cdot 2 \cdot \sqrt{3}-\frac{1}{2} \ln |2-\sqrt{3}| \\
& =-\frac{1}{3}+\sqrt{3}+\frac{1}{2} \ln \frac{1}{\sqrt{3}}-\frac{1}{2} \ln (2-\sqrt{3}) \approx 1.7825
\end{aligned}
$$

41. $\int \sin 8 x \cos 5 x d x \stackrel{2 \text { a }}{=} \int \frac{1}{2}[\sin (8 x-5 x)+\sin (8 x+5 x)] d x=\frac{1}{2} \int \sin 3 x d x+\frac{1}{2} \int \sin 13 x d x$

$$
=-\frac{1}{6} \cos 3 x-\frac{1}{26} \cos 13 x+C
$$

42. $\int \cos \pi x \cos 4 \pi x d x \stackrel{2 c}{=} \int \frac{1}{2}[\cos (\pi x-4 \pi x)+\cos (\pi x+4 \pi x)] d x=\frac{1}{2} \int \cos (-3 \pi x) d x+\frac{1}{2} \int \cos (5 \pi x) d x$

$$
=\frac{1}{2} \int \cos 3 \pi x d x+\frac{1}{2} \int \cos 5 \pi x d x=\frac{1}{6 \pi} \sin 3 \pi x+\frac{1}{10 \pi} \sin 5 \pi x+C
$$

43. $\int \sin 5 \theta \sin \theta d \theta \stackrel{2 \mathrm{~b}}{=} \int \frac{1}{2}[\cos (5 \theta-\theta)-\cos (5 \theta+\theta)] d \theta=\frac{1}{2} \int \cos 4 \theta d \theta-\frac{1}{2} \int \cos 6 \theta d \theta=\frac{1}{8} \sin 4 \theta-\frac{1}{12} \sin 6 \theta+C$
44. $\int \frac{\cos x+\sin x}{\sin 2 x} d x=\frac{1}{2} \int \frac{\cos x+\sin x}{\sin x \cos x} d x=\frac{1}{2} \int(\csc x+\sec x) d x$

$$
=\frac{1}{2}(\ln |\csc x-\cot x|+\ln |\sec x+\tan x|)+C \quad[\text { by Exercise } 39 \text { and (1)] }
$$

45. $\int_{0}^{\pi / 6} \sqrt{1+\cos 2 x} d x=\int_{0}^{\pi / 6} \sqrt{1+\left(2 \cos ^{2} x-1\right)} d x=\int_{0}^{\pi / 6} \sqrt{2 \cos ^{2} x} d x=\sqrt{2} \int_{0}^{\pi / 6} \sqrt{\cos ^{2} x} d x$

$$
\begin{aligned}
& =\sqrt{2} \int_{0}^{\pi / 6}|\cos x| d x=\sqrt{2} \int_{0}^{\pi / 6} \cos x d x \quad[\text { since } \cos x>0 \text { for } 0 \leq x \leq \pi / 6] \\
& =\sqrt{2}[\sin x]_{0}^{\pi / 6}=\sqrt{2}\left(\frac{1}{2}-0\right)=\frac{1}{2} \sqrt{2}
\end{aligned}
$$

46. $\int_{0}^{\pi / 4} \sqrt{1-\cos 4 \theta} d \theta=\int_{0}^{\pi / 4} \sqrt{1-\left(1-2 \sin ^{2}(2 \theta)\right)} d \theta=\int_{0}^{\pi / 4} \sqrt{2 \sin ^{2}(2 \theta)} d \theta=\sqrt{2} \int_{0}^{\pi / 4} \sqrt{\sin ^{2}(2 \theta)} d \theta$

$$
\begin{aligned}
& =\sqrt{2} \int_{0}^{\pi / 4}|\sin 2 \theta| d \theta=\sqrt{2} \int_{0}^{\pi / 4} \sin 2 \theta d \theta \quad[\text { since } \sin 2 \theta \geq 0 \text { for } 0 \leq \theta \leq \pi / 4] \\
& =\sqrt{2}\left[-\frac{1}{2} \cos 2 \theta\right]_{0}^{\pi / 4}=-\frac{1}{2} \sqrt{2}(0-1)=\frac{1}{2} \sqrt{2}
\end{aligned}
$$

47. $\int \frac{1-\tan ^{2} x}{\sec ^{2} x} d x=\int\left(\cos ^{2} x-\sin ^{2} x\right) d x=\int \cos 2 x d x=\frac{1}{2} \sin 2 x+C$
48. $\int \frac{d x}{\cos x-1}=\int \frac{1}{\cos x-1} \cdot \frac{\cos x+1}{\cos x+1} d x=\int \frac{\cos x+1}{\cos ^{2} x-1} d x=\int \frac{\cos x+1}{-\sin ^{2} x} d x$

$$
=\int\left(-\cot x \csc x-\csc ^{2} x\right) d x=\csc x+\cot x+C
$$

49. $\int x \tan ^{2} x d x=\int x\left(\sec ^{2} x-1\right) d x=\int x \sec ^{2} x d x-\int x d x$

$$
\begin{aligned}
& =x \tan x-\int \tan x d x-\frac{1}{2} x^{2} \quad\left[\begin{array}{cl}
u=x, & d v=\sec ^{2} x d x \\
d u=d x, & v=\tan x
\end{array}\right] \\
& =x \tan x-\ln |\sec x|-\frac{1}{2} x^{2}+C
\end{aligned}
$$

